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Frankl’ and Falkovich [ 1,2 I have investigated that phase of the laminar 

flow through a Lava1 nozzle where a gas accelerates from subsonic to 

supersonic velocity during the passage through the critical cross-section 

(throat). Such flows take place when the difference between the pressures 

at the entrance and at the exit of the nozzle is sufficiently large. If 

on the other hand, the pressure at the-entrance does not exceed very much 

the pressure on the discharge side, then the stream will be subsonic at 

both ends of the convergent-divergent nozzle, but it may contain super- 

sonic regions very near the walls adjacent to the region of the critical 

cross-section. A simple solution of the equations of the gas motion, 

describing such mixed flow in plane and in axially symmetric nozzles, was 

given in works [ 3,~ 1. In the present note the solution is derived for 

the analogous spatial flows which contain supersonic regions adjoining 

the walls of a duct which has two planes of symmetry. By proper choice of 

the arbitrary constants contained in the solution to be presented, it is 

possible to increase the regions of local supersonic flow and, as a re- 

sult, to join them along the axis of the nozzle. In a sense such a flow 

is singular, because in this case the regime of the flow changes and the 

velocity field behind the critical cross-section becomes supersonic. 

Moreover, the solution presented here transforms into the solution ob- 

tained in [5 1, which describes the spatial gas flows in the region of 

the transition surface from subsonic to supersonic velocities. 

We shall investigate the flow of an ideal gas with velocities that 

differ only infinitesimally from the critical velocity, in a duct which 

has two planes of symmetry. These two planes intersect along a straight 
1 ine, namely, the axis of the nozzle. Chosing the x-axis of the cylind- 

rical coordinate system X, r, 8 to be coincident with the axis of the 
nozzle, we shall write the equation which determines the transonic gas 
flow in the form 
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where 4 is the potential of the perturbations. Also 
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where vx, V; and ~0 are the perturbations along x, r and e-axes of a 

reference velocity, equal in magnitude to the critical velocity (I, and 

directed along the axis of the nozzle, K is the POiSSOn adiabatic 

coefficient. 

Differentiating relationship (1) with respect to x and introducing a 

new function 

we obtain the 

a9 c x+1 
ax - u u=-v 

a, x ) 
equation 
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(3) 

(4) 

To describe the spatial mixed flows which contain local supersonic 

regions adjoining the walls of the nozzle, we shall look for a solution 

of equation (4) in the form 

X+1 

a. 
V~ = u = 4 ‘; (1 + k2 + 2k cos 28) r2 + 4 $ g (c;) 

< = cr + d (1 f k cos 29) r2 (5) 

Substituting expression (5) into equation (4) it is easily seen that 

the constants C, d, and k may be chosen arbitrarily and that the function 

g(c) must satisfy the ordinary differential equation 

(a2 = 1 + k”) (6) 

Hereafter we shall assume that everywhere c > 0 and d > 0. 

Let us find now the remaining velocity components or and ~0. To this 

end it is simpler to make use of the equations which express the condi- 

tion of irrotationality of the stream: 

I av, av, avx av, a wd au, -_=_ 
r as ax p ar=z-1 -=as ar (7) 

From the first two equations of this system we have, taking into con- 
sideration formulas (5): 

x+1 
a. 

v,=-i6~kzrsln28-Bd~kg(~)rsin28+~X,(r, 8) 

x+1 
-;;;-vu,=8$1+k2+2kcos28)zr+8d;(1+kcos29)g(~)r+Xl(r, 8) (6) 
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Using the last of the expressions (7), we obtain the first equation 

which connects the two functions x(r, 8) and s(‘; 8) which have to be 
determined: 

The second equation which these functions satisfy may be found by 

substituting expressions (8) into the equation of motion (1): 

It follows that the velocity component t) does not determine uniquely 

the components vr and ~0; on the contrary, Eo every solution U(X, r, 8) 

of equation (4) there corresponds an infinite number of solutions of two 
linear partial differential equations (9) and (10). The particular solu- 

tion of these equations is derived from the formulas 

x1 = r4 [1 sin 48 - *is d3cwYk (1 $ k2) sin 231 

~2 = 4r3 [- 'jp 1 cos 48 f ‘is d3c-3k (1 + k2) cos 23 + d3c-3 (1 + k2)] (11) 

The remaining solutions of the system (9) and (10) may be expressed, 

using the principle of superposition, in terms of harmonic functions. To 

describe the flows in the nozzles, the cross-section of which has two 

axes of symmetry, it is sufficient to make use of the solution (111, be- 

cause then the functions v 
T 

and vr will be even with respect to 8 while 

the function IJO will be odd. 

Now let us investigate the 

end we integrate equation (6) 
function g(t) in greater detail. To this 

and obtain as a result 

g -$- = g + a2E (12) 

The constant of integration here is included in 4, since equations (1) 

and (4) are Invariant with respect to a displacement along the x-axis. 

The differential equation of the first order (12) has one singular point 

[ = g = 0, which for any value of a is a saddle point. On the curve 
g=- a25 the derivative becomes zero, for g = 0 this derivative is in- 

finite. Therefore, the qualitative configuration of the integral curves 

of equation (12) will be the same for any values of the parameter a, as 

Is shown in Fig. 1. To obtain an exact solution of this equation we shall 

Introduce the change of variables 

(13) 

From the resulting equation (61 we have now 

gq dg = q - q” + ($2 

d,o 
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Equation (14} is easily integrable: 
1 

where e is an arbitrary constant which may be real or complex, the quan- 
tities q1 and g2 are expressed in terms of a2 by means of equations 

Eliminating dg/& = Q from relationships (12) and (15) we obtain the 

formula which defines the function g(r) in implicit form: 

(g + a”E / qP (g -I- a25 / qdeql = e (17) 

For k = I, i.e. in the case laminar flows, expression (17) becomes the 

solution obtained in [ 3 ] ; equation (17) describes the flows with axial 

symmetry investigated in [ 4 1. 

For the description of the mixed flows we have to choose from the four 

families of curves, shown in Fig. 1, the curves of the family A. Indeed, 

in the solutions which correspond to the branches B and B’, the deriva- 

tives of the velocity components of the stream become infinite at the 

points g = 0; if we chose branch A1 for the desired solution g(f), then 

the velocity field in the duct will be supersonic. The dimensions of the 

local supersonic zone depends on the magnitude of the constant e which 

appears in formula (17). When e is decreased the region of the supersonic 

velocities is increased and for e = 0, the supersonic zone is extended to 

the axis of the nozzle. In this limiting case the graph of the function 

g(c) is represented by the broken curve aob. Then the type of the flow 

changes, because the velocity field downstream of the critical cross- 

section becomes supersonic. The corresponding solution g(t) is represented 
in Fig. 1 by the straight line aoc; function v in terms of Cartesian co- 

ordinates t = r cos 8, y = r sin @ is given by’the formula obtained by 

the author in [ 5 1 : 

(18) 

[3 + 2k2 +r/l + 49 + (5 ‘f v’1 + 4~29 kf z*+ 

+2 $13 + 2ke F VI + 4az--(5 F t/l f 4ae) kJ y* 

The form of the function v r and ve is easily obtainable when using 

equations (8) and (11). 

The derived solutions as given by formulas (5) and (8) may be used to 

describe the gas motion, as it is varied systematically by increasing the 

difference of pressure between the entrance and the exit of the nozzle. 

Also the extent of the supersonic zone, which is formed initially near 

the walls of the channel in the region of the critical cross-section, is 
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increased gradually. When the difference of pressure is further increased, 

the surface of transition from subsonic to supersonic flow develops in 

the region of the critical 

described by formula (18). 

e 

which describes a singular 

Fig. 1. 

cross-section. The gas flow in this region is 

The solution which is given by the equation 

zz o- (g = - a25 1 ql,a) (19) 

flow with a local supersonic zone is not an 
analytical solution. The derivatives of the velocity components, which 

correspond to it, contain a discontinuity on the surface: 

x = - dc-’ (1 + k cos 29) r2 (20) 

This surface, according to the theory of partial differential equa- 

tions, is characteristic for equation (4). A detailed investigation of 

solutions with second derivatives of the velocity potential, having dis- 

continuities on the particular characteristic surfaces, was carried out 

in [6 1. 

We shall introduce the notations 

2 -+3i +4a”) =A, -1 5 ‘F 7/l + 4a2 4 k==h 
3 + 2k2 $ 1/ 1 + 4aa 

(21) 

Then the expressions (18) will have the form [ 5,6 ] : 

+ vx = A, + ‘42 (l/g - n) 23 + A2 (l/4 + n) y2 
l 

From formulas (20) and (22) it follows that quantity k characterizes 

the degree of deviation of the form of the particular characteristic sur- 

face from a surface of revolution,and parameter n characterizes the de- 

gree of deviation of the stream velocity field from axial symmetry. It 

is interesting to point out that one of the two solutions, given by the 
equation c = 0, while describing the gas motion with a supersonic velocity 
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field downstream of the critical cross-section of the nozzle does not 

account for all possible flows of that type. Only the flows to which 

correspond values of n of absolute magnitude not exceeding 5/16 are re- 

presented by formula (18). This is the case, because in the solutions de- 

veloped in this paper in accordance with relationship (20), the charac- 

teristic surfaces always pass through the center of the nozzle. At the 

same time in [ 5 ] it has been shown that similar surfaces exist only for 

s lying in the interval - 5/16 4 n< 5/16. The absence of particular 

characteristic surfaces in the solutions for 1 n/ > 5/16 and also the fact 

that such solutions cannot be obtained from formula (5) by means of a 

limiting process, when the magnitude of constant e is approaching zero, 

point to the instability of the corresponding mixed gas flows. 

e d e 

Fig. 2. 

In those cases when values e are near zero, the graph of function g(t) 

does not differ greatly from the broken curve sob shown in Fig. 1. There- 

fore, using formula (181. it is easy to obtain the shape of the curves 

which are formed by the intersection of the sonic surface with the mutual- 

ly perpendicular planes y = 0 and z = 0. It may be shown that for 

1 k 1 < l/3 in both of these planes, curves are obtained which have the 

usual form; they are represented in Fig. Za. The curves shown in Fig. Zb,c 

are obtained for 1 k 1 > l/3 in either the plane y = 0 or z = 0. The first 

of these figures corresponds to the case l/3 < \ k ] < 1 and the second to 

- \ k] > 1. The form of the intersection of the sonic surface with the 

second plane E = 0 or y = 0, respectively for these values of k are 
qualitatively the same as for 1 k 1 < l/3. In Figs. 2a, b, c the abscissa 

coincides with one of the axes y or z depending upon the sign of k. 

I wish to express my sincere gratitude to 1.5. Nemchinov who drew my 

attention to the results given in [ 3 1. 
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